SCEW: Programmable BF T-
Consensus for Client-Centric
P2P Web Applications

PaPoC "21

DistriN=t
Martijn Sauwens, Kristof Jannes, Bert Lagaisse, Wouter Joosen Is rl o

o m

e
e

eLoyalty: Shared Loyalty Program

Integrated Loyalty programs
Redeem loyaly points at any participating store

| Decentralized: no central authority
e Merchants do not fully trust eachother

I Double-spending problem

® No customers may spend the same loyalty point

eShare: Sharing Economy

Tool Sharing Platform

Small communities share tools and track them

| Lack of trust between participants
e l00Is can be stolen, damaged, lost, ...

I Decentralized Tracking
Whereabouts of tools must be tracked reliably

Application Challenges

Managing shared assets
Securing assets with real world value and consequences

N
Peer-to-Peer applications
Networks of mutually distrusting parties

Real-World interactions
Applications supplementary to interactions in the real world

@17 Ease-of-Use

Non-expert target audience

State-of-the-art

Peer-to-Peer data synchronization frameworks
Automerge, Legion, OWebSync, Yjs

Blockchains
Bitcoin (PoW), Ethereum (PoW + Smart Contracts),
Hyperledger Fabric (BFT + Smart Contracts)

Consensus for the browser
“You Don’'t Need a Ledger”

SCEW: Programmable BFT-Consensus with Smart

Contracts for Client-Centric P2P Web Applications

A programming framework for lightweight consensus

Architecture and programming interface

Evaluation
Performance and overhead analysis

Taking a step back

Future work and conclusion

(o0}

SCEW: Programmable BFT-Consensus with Smart

Contracts for Client-Centric P2P Web Applications

A programming framework for lightweight consensus

Evaluation

Taking a step back

©

SCEW: A Programming Framework
For Lightweight Consensus

BMachine

(.

)

Primitive Contract

(R ’

ft —> &
Atomic Register

Integration

Logic T ¢

—1)

—
- Replica manager
(_

i
-

WebRTC

State-Based approach to asset management
Programmable, Byzantine Fault Tolerant, Lightweight

Smart Contracts
Model asset life-cycle

Atomic Registers
Own and represent a single asset
Protect against arbitrary and Byzantine faults

10

Developer Point of View

BMachine

Write BMachine Smart Contract

Describe asset life-cycle as FSM

Write Integration Logic
gl = Initiating state transitions by calling contract

» Reading value of current state from register

11

Smart Contracts

BMachine

BMachine Smart Contract
Finite state machine modelling asset life-cycle

12

Smart Contracts

Transition_3
Transition_1

Transition 2

ETransition = { !
+guard: (State, Input, Ctx) => bool, .
' effect: (State, Input, Ctx) => State
i}

'State = { name: string, value: Value };:

BMachine Smart Contract

Finite state machine modelling asset life-cycle

BMachine Definition:

» BMachine states
Values and lifecycle phases

= BMachine transitions
Transformations of asset value
Precondition: guard
Postcondition: effect

13

Smart Contracts: eShare

Start

Offered

Broken

Model life-cycle of a tool
Creation, Tracking, Out-of-Order

Creation
Start - Ready

Tracking
Ready < Offered

Out-of-Order
Ready — Broken

14

Atomic Registers

oy

Atomic Register

Stores individual assets
Synchronization and protection

State-Based CRDT

= Robust synchronization of single assets
= Reduce communication with Merkle Trees

Shared Asset Protection
Through BFT-Consensus and signed proposals

15

Primitive Contract

= Adaption Layer

Primitive Contract High level State Machines vs Register

Encoding BMachine State

Retrieve state and call transitions

Handle BMachine Transitions
As proposals for Atomic Register

SCEW: Programmable BFT-Consensus with Smart

Contracts for Client-Centric P2P Web Applications

A programming framework for lightweight consensus

Evaluation

Taking a step back

17

Experimental Setup

eShare use-case
Users share tools at fixed transaction rate

Performance at Scale
Scale up to 100 browser instances

Overhead Analysis
eShare application with and without contracts

[Byzantine] Fault Tolerance at Scale
Crashes and invalid proposals

18

Evaluation Results

Latency [s]
3.5

37

Peers [#]

20 40 60 80 100
[Register-Only [Contracts 7] Crash [l Malicious

19

SCEW: Programmable BFT-Consensus with Smart

Contracts for Client-Centric P2P Web Applications

A programming framework for lightweight consensus

Evaluation

Taking a step back

20

Challenges Reuvisited

Managing Shared Assets

Securing assets with real world value

Peer-to-Peer applications
Networks of mutually distrusting parties

Real-World interactions
Supporting interactions in the real world

g(% Ease-of-Use

Non-expert target audience

il
x |

Q8

>

Smart Contracts

BFT-Consensus

CRDT’s

Web application

21

Future Work

Manage assets individually
Smart contracts cannot call eachother,
No support for transactions across multiple assets.

Comparison with blockchain solutions

Explore alternative Smart Contract formats
Beyond BMachines

22

SCEW Programming framework

Lightweight BFT-Consensus

Through state-based atomic registers

Smart Contracts
State machine representation of contract life-cycle

Client-Centric P2P Web Applications

Browser implementation

23

SCEW: Programmable BF T-
Consensus for Client-Centric
P2P Web Applications

PaPoC "21

DistriN=t
Martijn Sauwens, Kristof Jannes, Bert Lagaisse, Wouter Joosen Is rl o

martijn.sauwens@kuleuven.be
26 April 2021

