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eLoyalty: Shared Loyalty Program

Integrated Loyalty programs
Redeem loyaly points at any participating store

| Decentralized: no central authority
e Merchants do not fully trust eachother

I Double-spending problem

® No customers may spend the same loyalty point






eShare: Sharing Economy

Tool Sharing Platform

Small communities share tools and track them

| Lack of trust between participants
e l00Is can be stolen, damaged, lost, ...

I Decentralized Tracking
Whereabouts of tools must be tracked reliably



Application Challenges

Managing shared assets
Securing assets with real world value and consequences

N
Peer-to-Peer applications
Networks of mutually distrusting parties

Real-World interactions
Applications supplementary to interactions in the real world

@17 Ease-of-Use

Non-expert target audience



State-of-the-art

Peer-to-Peer data synchronization frameworks
Automerge, Legion, OWebSync, Yjs

Blockchains
Bitcoin (PoW), Ethereum (PoW + Smart Contracts),
Hyperledger Fabric (BFT + Smart Contracts)

Consensus for the browser
“You Don’'t Need a Ledger”



SCEW: Programmable BFT-Consensus with Smart

Contracts for Client-Centric P2P Web Applications

A programming framework for lightweight consensus

Architecture and programming interface

Evaluation
Performance and overhead analysis

Taking a step back

Future work and conclusion
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SCEW: Programmable BFT-Consensus with Smart

Contracts for Client-Centric P2P Web Applications

A programming framework for lightweight consensus

Evaluation

Taking a step back
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SCEW: A Programming Framework
For Lightweight Consensus

BMachine
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WebRTC

State-Based approach to asset management
Programmable, Byzantine Fault Tolerant, Lightweight

Smart Contracts
Model asset life-cycle

Atomic Registers
Own and represent a single asset
Protect against arbitrary and Byzantine faults
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Developer Point of View

BMachine

Write BMachine Smart Contract

Describe asset life-cycle as FSM

Write Integration Logic
gl = Initiating state transitions by calling contract

» Reading value of current state from register
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Smart Contracts

BMachine

BMachine Smart Contract
Finite state machine modelling asset life-cycle
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Smart Contracts

Transition_3
Transition_1

Transition 2

ETransition = { !
+guard: (State, Input, Ctx) => bool, .
' effect: (State, Input, Ctx) => State
i}

'State = { name: string, value: Value };:

BMachine Smart Contract

Finite state machine modelling asset life-cycle

BMachine Definition:

» BMachine states
Values and lifecycle phases

= BMachine transitions
Transformations of asset value
Precondition: guard
Postcondition: effect
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Smart Contracts: eShare

Start

Offered

Broken

Model life-cycle of a tool
Creation, Tracking, Out-of-Order

Creation
Start - Ready

Tracking
Ready < Offered

Out-of-Order
Ready — Broken
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Atomic Registers

oy

Atomic Register

Stores individual assets
Synchronization and protection

State-Based CRDT

= Robust synchronization of single assets
= Reduce communication with Merkle Trees

Shared Asset Protection
Through BFT-Consensus and signed proposals
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Primitive Contract

= Adaption Layer

Primitive Contract High level State Machines vs Register

Encoding BMachine State

Retrieve state and call transitions

Handle BMachine Transitions
As proposals for Atomic Register



SCEW: Programmable BFT-Consensus with Smart

Contracts for Client-Centric P2P Web Applications

A programming framework for lightweight consensus

Evaluation

Taking a step back
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Experimental Setup

eShare use-case
Users share tools at fixed transaction rate

Performance at Scale
Scale up to 100 browser instances

Overhead Analysis
eShare application with and without contracts

[Byzantine] Fault Tolerance at Scale
Crashes and invalid proposals
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Evaluation Results

Latency [s]
3.5

37

Peers [#]

20 40 60 80 100
[ Register-Only [ Contracts 7] Crash [l Malicious
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SCEW: Programmable BFT-Consensus with Smart

Contracts for Client-Centric P2P Web Applications

A programming framework for lightweight consensus

Evaluation

Taking a step back
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Challenges Reuvisited

Managing Shared Assets

Securing assets with real world value

Peer-to-Peer applications
Networks of mutually distrusting parties

Real-World interactions
Supporting interactions in the real world

g(% Ease-of-Use

Non-expert target audience
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Smart Contracts

BFT-Consensus

CRDT’s

Web application
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Future Work

Manage assets individually
Smart contracts cannot call eachother,
No support for transactions across multiple assets.

Comparison with blockchain solutions

Explore alternative Smart Contract formats
Beyond BMachines
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SCEW Programming framework

Lightweight BFT-Consensus

Through state-based atomic registers

Smart Contracts
State machine representation of contract life-cycle

Client-Centric P2P Web Applications

Browser implementation
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