
SCEW: Programmable BFT-
Consensus for Client-Centric
P2P Web Applications
PaPoC ’21

Martijn Sauwens, Kristof Jannes, Bert Lagaisse, Wouter Joosen
26 April 2021

eLoyalty: Shared Loyalty Program

Integrated Loyalty programs
Redeem loyaly points at any participating store

Decentralized: no central authority
Merchants do not fully trust eachother

Double-spending problem
No customers may spend the same loyalty point

3

eShare: Sharing Economy

Tool Sharing Platform
Small communities share tools and track them

Lack of trust between participants
Tools can be stolen, damaged, lost, …

Decentralized Tracking
Whereabouts of tools must be tracked reliably

5

Application Challenges

Managing shared assets
Securing assets with real world value and consequences

Peer-to-Peer applications
Networks of mutually distrusting parties

Real-World interactions
Applications supplementary to interactions in the real world

Ease-of-Use
Non-expert target audience

6

State-of-the-art

Peer-to-Peer data synchronization frameworks
Automerge, Legion, OWebSync, Yjs

Blockchains
Bitcoin (PoW), Ethereum (PoW + Smart Contracts),
Hyperledger Fabric (BFT + Smart Contracts)

Consensus for the browser
“You Don’t Need a Ledger”

7

SCEW: Programmable BFT-Consensus with Smart
Contracts for Client-Centric P2P Web Applications

A programming framework for lightweight consensus
Architecture and programming interface

Evaluation
Performance and overhead analysis

Taking a step back
Future work and conclusion

8

SCEW: Programmable BFT-Consensus with Smart
Contracts for Client-Centric P2P Web Applications

A programming framework for lightweight consensus
Architecture and programming interface

Evaluation
Performance and overhead analysis

Taking a step back
Future work and conclusion

9

SCEW: A Programming Framework
For Lightweight Consensus

State-Based approach to asset management
Programmable, Byzantine Fault Tolerant, Lightweight

Smart Contracts
Model asset life-cycle

Atomic Registers
Own and represent a single asset
Protect against arbitrary and Byzantine faults

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register Atomic Register

BMachine

Replica manager

Integration
Logic

IndexedDB

WebRTC

Primitive Contract

Atomic Register

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

BMachine

10

Developer Point of View

Write BMachine Smart Contract
Describe asset life-cycle as FSM

Write Integration Logic
§ Initiating state transitions by calling contract
§ Reading value of current state from register

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register Atomic Register

BMachine

Replica manager

Integration
Logic

IndexedDB

WebRTC

Primitive Contract

Atomic Register

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

BMachine

Atomic Register

Primitive Contract

Replica manager

IndexedDB

WebRTC

BMachine

Integration
Logic

11

Smart Contracts

BMachine Smart Contract
Finite state machine modelling asset life-cycle

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register Atomic Register

BMachine

Replica manager

Integration
Logic

IndexedDB

WebRTC

Primitive Contract

Atomic Register

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

BMachine

12

Smart Contracts

BMachine Smart Contract
Finite state machine modelling asset life-cycle

BMachine Definition:
§ BMachine states

Values and lifecycle phases

§ BMachine transitions
Transformations of asset value
Precondition: guard
Postcondition: effect

State1

State2

State 3

Transition = {
 guard: (State, Input, Ctx) => bool,
 effect: (State, Input, Ctx) => State
};

State = { name: string, value: Value };

Transition_1

Transition_2

Transition_3

13

Smart Contracts: eShare

14

Model life-cycle of a tool
Creation, Tracking, Out-of-Order

Creation
Start → Ready

Tracking
Ready ↔ Offered

Out-of-Order
Ready → Broken

Start Ready

Broken

Offered

Create

Of
fe
r

Re
je
ct

Ac
ce
pt

Report

Ca
nc
el

Atomic Registers

Stores individual assets
Synchronization and protection

State-Based CRDT
§ Robust synchronization of single assets
§ Reduce communication with Merkle Trees

Shared Asset Protection
Through BFT-Consensus and signed proposals

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register Atomic Register

BMachine

Replica manager

Integration
Logic

IndexedDB

WebRTC

Primitive Contract

Atomic Register

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

BMachine

Atomic Register

Primitive Contract

Replica manager

IndexedDB

WebRTC

BMachine

Integration
Logic

15

Primitive Contract

Adaption Layer
High level State Machines vs Register

Encoding BMachine State
Retrieve state and call transitions

Handle BMachine Transitions
As proposals for Atomic Register

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

BMachine

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

Atomic Register Atomic Register

BMachine

Replica manager

Integration
Logic

IndexedDB

WebRTC

Primitive Contract

Atomic Register

Primitive Contract

Replica manager

Integration
Logic

IndexedDB

WebRTC

BMachine

Atomic Register

Primitive Contract

Replica manager

IndexedDB

WebRTC

BMachine

Integration
Logic

16

SCEW: Programmable BFT-Consensus with Smart
Contracts for Client-Centric P2P Web Applications

A programming framework for lightweight consensus
Architecture and programming interface

Evaluation
Performance and overhead analysis

Taking a step back
Future work and conclusion

17

Experimental Setup

eShare use-case
Users share tools at fixed transaction rate

Performance at Scale
Scale up to 100 browser instances

Overhead Analysis
eShare application with and without contracts

[Byzantine] Fault Tolerance at Scale
Crashes and invalid proposals

18

Evaluation Results

SCEW: Programmable BFT-Consensus with Smart Contracts for Client-Centric P2P Web Applications PaPoC’21, April 26, 2021, Online, United Kingdom

4 } ;
5 type S t a t e = { t o o l : ID ; owner : ID } ;
6 type Ctx = { c a l l e r : ID } ;
7 const o f f e r T r a n s i t i o n : T r a n s i t i o n = {
8 name : ' o f f e r ' , from : ' Ready ' , t o : ' Of f e r ed ' ,
9 guard : (s : S t a t e , o : Of f e r , c t x : Ctx) =>
10 s . owner=== c t x . c a l l e r ,
11 e f f e c t : (s : S t a t e , o : Of f e r , c t x : Ctx) = > ({
12 t o o l : s . t o o l ,
13 o f f e r e r : s . owner ,
14 o f f e r r e e : o . borrower ,
15 } as Too lO f f e r) ,
16 } ;

Listing 2. Integration logic for calling the o�er transition
on a register containing the tool and retrieve the result.
1 await t o o l . p ropose ({
2 t r a n s i t i o n : ' o f f e r ' ,
3 a r g s : { borrower : borrowerID } ,
4 }) ;
5 const va lue = await t o o l . g e t () ;

5 Evaluation
This section presents and discusses the evaluation of SCEW.
To evaluate SCEW, we implemented a research prototype
of both the middleware and a tool sharing application. The
contract used by the application is shown in Figure 2. The
atomic registers are implemented using a quorum based
BFT-protocol similar to Tickets [12]. We �rst show the ex-
perimental setup, followed by a discussion of the results.

Setup. The experiments aim to measure the performance
and scalability of SCEW in terms of latency for varying
network sizes in di�erent scenarios. The �rst two scenarios,
register-only and contract, aim to establish a baseline for both
the performance overhead caused by the contracts as well
as the performance of a network with no faults. The third
scenario crash investigates the impact of crashes, and the
last scenario malicious considers malicious peers which are
actively injecting faults by violating the contract.
The experiments were conducted on the Azure public

cloud. The P2P network is emulated by 4 to 20 standard F8s
v2 virtual machines with 8 vCPUs and 16GB RAM. Each VM
runs 5 containerized instances of the tool sharing application
in the chromium web browser. The P2P overlay is structured
as a �at overlay where each browser is connected with at
least 5 other peers. We modelled 4G mobile network condi-
tions with the Linux tra�c control tool tc [10], increasing the
network delay to 60ms [7]. Users are emulated by exchang-
ing tools for 5 minutes at a �xed transaction rate of 1 tx/s,
scaling down proportionally as peers leave the network. This
transaction rate was chosen as an over approximation for

any real-world interactions. Each experiment was executed
ten times to increase con�dence in our results.

20 40 60 80 100
0

1

2

3

3.5

Peers [#]

Latency [s]

Register-Only Contracts Crash Malicious

Figure 3. Distribution of latency versus network size for
each scenario. Whiskers indicate the 1th and 99th percentile.

Results and discussion. Results are shown in Figure 3.
Comparing the �rst two scenarios register-only and contracts,
it is clear that adding smart contracts only introduces very
limited overhead. Both scenarios show latencies below 2
seconds, even for larger networks, which is su�cient for
the interactive performance required by both use cases. The
increase in latency for larger networks can mostly be attrib-
uted to an increase in overhead by the underlying consensus
protocol, as more peers need to vote to reach the quorum.

For both the crash andmalicious scenarios 30% of all peers
are a�ected by faults. The 99th percentile latency increases
in both scenarios for larger networks, but stays below 3.2
seconds. This relative increase in latency compared to earlier
scenarios can be explained by the way in which the network
handles the aforementioned faults. In the case of crashes,
peers stop actively partaking in the application, while the
remaining peers try to heal the overlay network. The sce-
nario with malicious peers behaves similarly, as peers which
violate the contract will be ignored by any honest peers
that detect malicious behavior. In both cases the quorum re-
quired to reach consensus remains unaltered while the active
portion of the network decreases, meaning that a smaller
number of peers must collect the same amount of votes to
con�rm a proposal. This increases the contribution of slower
peers to the critical path, increasing latency.
Overall, our evaluation shows that SCEW is able to keep

transaction latencies below 3.2 seconds in 99% of all trans-
actions, even in the case of failures in networks with 100
peers. These latencies are acceptable for both the Loyalty
Programs and Sharing Economy use cases, as transactions are
only performed when loyalty points are redeemed and tools
are exchanged between users.

5

19

SCEW: Programmable BFT-Consensus with Smart
Contracts for Client-Centric P2P Web Applications

A programming framework for lightweight consensus
Architecture and programming interface

Evaluation
Performance and overhead analysis

Taking a step back
Future work and conclusion

20

Challenges Revisited

Managing Shared Assets
Securing assets with real world value

Peer-to-Peer applications
Networks of mutually distrusting parties

Real-World interactions
Supporting interactions in the real world

Ease-of-Use
Non-expert target audience

Smart Contracts

BFT-Consensus

CRDT’s

Web application

21

Future Work

Manage assets individually
Smart contracts cannot call eachother,
No support for transactions across multiple assets.

Comparison with blockchain solutions

Explore alternative Smart Contract formats
Beyond BMachines

22

SCEW Programming framework

Lightweight BFT-Consensus
Through state-based atomic registers

Smart Contracts
State machine representation of contract life-cycle

Client-Centric P2P Web Applications
Browser implementation

23

SCEW: Programmable BFT-
Consensus for Client-Centric
P2P Web Applications
PaPoC ’21

Martijn Sauwens, Kristof Jannes, Bert Lagaisse, Wouter Joosen
martijn.sauwens@kuleuven.be
26 April 2021

